F.Y.B.Sc. (With Credits)-Regular-Semester 2012 Sem I
 E-02-Electronics : Paper-II (Transducers and Network Theorems)

P. Pages : 2

GUG/S/17/3308
Time : Three Hours

Max. Marks : 50

Notes : 1. All questions are compulsory and carry equal marks.
2. Draw a neat and labelled diagram wherever necessary.
3. Use of log table / calculator is allowed.

Either

1. a) What is thermistor ? Explain construction and working of thermistor.

Explain the construction and working of thermocouple.

OR

b) Explain construction and working of LVDT. Draw its characteristics and explain.

State the advantages of LVDT.

Either

2. a) What is LDR ? Explain the construction and working of LDR. State any four uses of LDR.

Explain working of photovoltaic cell.

OR

b) What is LCD ? Explain construction and working of dynamic scattering type LCD.

Explain the working of LASER diode.

Either

3. a) Explain ideal and practical voltage source with suitable diagram.

Explain ideal and practical current source with suitable diagram.

OR

b) State and prove -
i) Kirchoff's voltage law
ii) Kirchoff's current law

Either

4. a) State and prove Thevenin's theorem.

Using Thevenin's theorem, calculate current through R_{L} in the following circuit :

OR
b) State and prove maximum power transfer theorem.

In the circuit given below, find the value of load resistor R_{L} to be connected across Terminal A and B which would abstract maximum power from the circuit. Also find maximum power.

5. a) Define active and passive transducers. Give two examples of each. $\mathbf{2}^{\frac{1}{2}}$
b) State any five uses of LED. $\mathbf{2}^{1 ⁄ 2}$
c) Find the voltage across each resistor using voltage divider method in the following circuit.

d) State and explain Milliman's theorem.

