F.Y. B.Sc.(Part-I)(With Credits)-Regular-Semester 2012 Sem II 2SELE-T1 – Electronics - I : Paper-I (Digital Electronics and Computer Fundamentals)

P. Pages : 2 Time : Three Hour			lours * 1 7 2 4 *	GUG/S/17/5573 Max. Marks : 50	
	Note	s :	 All questions are compulsory. All questions carry equal marks. Draw neat and well labelled diagram wherever necessary. 		
1.	a)	Eitl Exp met Perf	her plain the conversion of decimal number into binary equivalent by double thod with suitable example. form the following conversion (Show calculation)	e dabble 5+5	
		i)	$(100110 \cdot 110)_2 = ()_{10}$		
		ii)	$(32.5)_{16} = ()_{10}$ OR		
	b)	Exp Sub	plain the 9's and 10's complement method with suitable example. struct following number using 9's and 10's complement method.	5+5	
		i)	745 - 436		
		ii)	2928 - 416		
2.	a)	Eitl Wh Exp eacl	her hat is Gray Code? Explain its advantages and applications. plain the conversion of binary to gray code and vice versa with suitable of h.	5+5 example of	
			OR		
	b)	Exp Exp	plain the basic logic gates and universal gates. plain why NAND and NOR gates are called universal gates.	5+5	
3.	a)	Eitl Exp trut Exp	her plain the construction and working of 2-input TTL NAND gate. write do h table for the circuit. plain Fan-in, Fan-out and noise immunity of a logic families with suitab	own the 5+5 le example.	
			OR		
	b)	Exp Cor Wh	plain the construction and working of CMOS NAND gate. mpare TTL and CMOS logic family characteristics. hich one is mostly preferred and why?	4+4+2	

4. Either

5.

a) Draw the block diagram of computer and explain the function of each block. Give the classification of computer on the basis of speep and storage capacity.

OR

6+4

b)	What is input and output device of computer? Discuss :		
	i)	Scanner.	
	ii)	Printer.	
	iii)	Hard disk.	
	a)	Explain octal number system.	2 ¹ / ₂ x4
	b)	Explain the parity codes.	
	c)	Explain the concept of tristate logic.	
	d)	Explain the generations of computer.	
