P. Pages : 2

Time : Three Hours

Notes: 1. All questions are compulsory and carry equal marks.
2. Draw neat and labelled diagrams wherever necessary.
3. Use of log table and calculator are allowed.

1. Either

a) For the given logic equation $f(A, B, C)=A B C+B \bar{C} D+\bar{A} B C$
i) Draw a truth table
ii) Simplify using k-map

For the given logic equation $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\pi \mathrm{M}(0,1,6,7,8,11,12,14,15)$
i) Write the logic equation in POS form
ii) Simplify using k-map

OR

b) What is demultiplexer ? Explain the operation of 1:4 DEMUX. using basic gates. Design 1:8 DEMUX using 1:4 DEMUX.
2. Either
a) What is encoder?
Draw the logic diagram of decimal to BCD encoder \& explain its working with truth table.

OR

b) What is half adder? Explain it with logic diagram and truth, table.
Draw the logic diagram of 4 bit binary adder. Explain its working.
3. Either
a) What is meant by clocked flip flop? Explain the working clocked SR FF. Also draw the timing diagram.

OR

b) What is the main disadvantage of JK FF? How is it overcome in JKMS FF? Explain. What is toggle flip flop? State its application.
4. Either
a) What is meant by modulus of a counter? How the required number of flip flops are
calculated in modified counter. Draw the logic diagram of 4 bit down counter and
explain its working. Write the count sequence and draw the timing diagram.

OR

b) How many flip flops are required for mod 9 counter?
Design and explain the mod- 8 up synchronous counter. Write the count sequence for the
counter.
5. a) What is Karnaugh map? Draw the two and four variable k-map. $\mathbf{2}^{\frac{1}{2}}$
b) Explain 2 line to 4 line decoder. $\quad \mathbf{2}^{1 ⁄ 2}$
c) What is meant by: $\quad \mathbf{2}^{1 / 2}$
i) Active high preset / clear inputs.
ii) Active low preset / clear inputs.
d) A synchronous counter is faster than an asynchronous counter. Justify the statement. $\mathbf{2 1 ²}^{1 ⁄ 2}$

