

GUG/W/15/3336

B. Sc. (Part-II) (With Credits)-

Regular-Semester 2012 Sem. - III

B.Sc.23131 Electronics - I Paper- I : (Amplifiers)

P. Pages : 3

Time : Three Hours

Max. Marks : 50

Notes : 1. All questions are compulsory and

- otes : 1. All questions are compulsory and carry equal marks.
 - 2. Draw neat and well labelled diagrams wherever necessary.
 - 3. Use of calculators and log tables are allowed.
- **1.** Either
 - a) What is biasing of transistor? Explain the need of dc bias and its stabilization in transistor circuit. Explain potential divider biasing method with the help of circuit diagram.

OR

 b) Draw the hybrid equivalent circuit for CE amplifier. Derive the expression for voltage gain, current gain and output impedance using h-parameters.

- 2. Either
 - a) What are the different classes of amplifiers? **10** Explain each in brief with graphical representation. Explain the working of direct coupled amplifier with the help of circuit diagram. Also state its disadvantages.

OR

- b) Explain the working of RC coupled amplifier and obtain an equation for voltage gain at mid frequency range using h-parameters.
- **3.** Either
 - a) Explain the working of difference amplifier 10 with suitable circuit diagram. Explain the need of dual power supply in difference amplifier.

OR

- b) What is op-Amp ? Explain the following parameters of op-Amp :
 - i) Input bias current.
 - ii) Input offset current.
 - iii) Input offset voltage.
 - iv) Slew rate.

GUG/W/15/3336

- 4. Either
 - a) Explain the concept of virtual ground with 10 respect to op-Amp. Explain op-Amp as an integrator and obtain the expression for output voltage. For op-Amp as an integrator given that RC = 1 second and input is step dc voltage as shown. Draw the output of integrator circuit.

OR

- b) Explain the working of Schmitt trigger using op-Amp with suitable circuit diagram. Draw input and output waveforms of Schimitt trigger.
- **5.** a) Explain CE transistor as an amplifier. $2^{1/2}$
 - b) Explain non linear and frequency distortion 2¹/₂ in amplifiers.
 - c) State ideal characteristics of op-Amp. $2^{1/2}$
 - d) Explain op-Amp as non inverting closed 2¹/₂ loop amplifier.
